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Abstract. The structure of quantum wavefunctions is discussed for a billiard system with mixed
classical dynamics. Using a scattering formalism, we introduce a Husimi-like distribution for
S-matrix eigenvectors at arbitrary wavenumbers,k (not necessarily eigenenergies of the system).
This constitutesN ∝ k probability density plots on the Poincaré surface of section at anyk.
Many eigenvectors are structured by classical objects such as invariant tori, the intermediate
layer between regular and chaotic motion, and unstable periodic orbits (‘scars’). We find that
eigenvector structure is stable over significant energy ranges, while the associated eigenphases
increase linearly withk at a rate determined by the underlying classical objects. Additionally,
we observe that in the presence of time-reversal symmetry, eigenvectors scarred by non-self-
retracing periodic orbits form doublets which are closely spaced in eigenphase.

Our results provide a new perspective on the quantization of structured states:quantization
is determined by the linearly increasing eigenphases, and occurs whenever an eigenphase is equal
to 2πM, while structure is encoded in the eigenvectors; it is present at all energies and varies
only slowly. This allows one to predict many quantized eigenfunctions over an entire energy
range by studying the eigenparameters ofS at asingle intermediate energy, and identifying the
underlying classical objects.

1. Introduction

While most of the work in quantum chaos has centred around the spectral properties of
classically chaotic systems, the structure of wavefunctions has also been of interest. This
has mostly been in the form of the study of eigenfunctions of systems which are strongly
chaotic, and one of the more intriguing effects which is observed is the presence of states
which seem to be highly correlated with specific unstable periodic orbits. This phenomenon,
dubbed ‘scars’, was originally described in [1, 2], and has since been observed in a wide
variety of systems in both experimental [3–5] and theoretical studies [6–13]. Significant
theoretical work was performed by Bogomolny [14] and Berry [15] (see also [16, 17]),
which showed that the most stable of the unstable periodic orbits can give rise to enhanced
probability along their trajectories in the energy-smoothed wavefunctions. However, this did
not explain the appearance of scars in individual wavefunctions. Further progress came in
[18] and [19], where a semiclassical scarring criterion was developed based on a resummed
version of the Wigner function and the Fredholm method, respectively.

In this work we study the problem of phase-space structuring of quantum states, among
them scarred states, from a slightly different point of view. We will first briefly introduce the
scattering formalism for the quantization of billiards and explain the relation of the scattering
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matrix (or S-matrix) to the classical Poincaré map. We argue thatS-matrix eigenvectors
are physically relevant objects to consider, even when they do not correspond to quantized
eigenstates. We introduce Wigner- and Husimi-like distributions on the Poincaré cell which
allow us to relate the structure of quantum states to the underlying classical dynamics. At
this stage we also introduce an observableBscar whose expectation value yields the degree
of overlap of eigenvectors with a given set of phase-space points on the Poincaré cell, e.g.
an unstable periodic orbit. After a rough categorization ofS-matrix eigenvectors, we survey
the structure of specific eigenvectors and present the relation to classical objects such as
invariant tori and periodic points. Finally, we explain howS-matrix eigenphases evolve as
functions of energy, and how this translates into the quantization of states. We conclude
with a discussion of the main results and a few comments.

2. The scattering approach to quantization

We begin by introducing the scattering method of quantization introduced in [20] (a similar
approach is Bogomolny’sT -matrix method [21]; however, we will not directly refer to it
here). For the sake of simplicity we restrict the discussion to autonomous systems with two
degrees of freedom. Consider such a system, say two-dimensional billiard, which can be
divided into two domains joined together along a line0. In the vicinity of0 we decompose
the wavefunction,9(r), into transverse normal modes,

9(r) =
∑
n

αnψ
(2)
n (r)+ βnψ(1)

n (r) (1)

whereψ(1,2)
n (r) have the interpretation of propagating across0 in different directions. For

example, if0 is a finite segment of they-axis then theψ(1,2)
n (r) would correspond to left-

and right-going waveguide modes, respectively, while in the case where0 denotes a circle
ψ(1,2)
n (r) can be taken to be outgoing and incoming cylindrical waves.

After performing this decomposition, the problem has been transformed into the one
of two back-to-back scattering systems. LetS(1) and S(2) denote the scattering matrices
associated with the two systems, and letα andβ be vectors whose elements are theαn,
βn, respectively. Then the scattering conditions can be written as

β = S(1)α α = S(2)β. (2)

Consistency of these two conditions leads to a quantization condition which is in the form
of a secular equation

det(S− I) = 0 S = S(2)S(1). (3)

Thus the system will have a quantized state whenever an eigenvalue ofS is equal to unity.
In this work we will refer toS as a scattering matrix as well, even though this usage is
slightly unconventional. If the normal modesψn(r) are orthogonal and have an associated
probability flux, jn, across0, then from the principle of conservation of probability one
can normalizeS such that the subspace for which thejn do not vanish is unitary. In the
following we will assume this to be the case.

The operatorS has a classical analogue in the Poincaré mapping. Let0 be our Poincaŕe
surface-of-section, and let us define thePoincaré cell to be the projection of the on-shell
phase space onto this section. For simplicity we assume that the potential is constant in
the vicinity of 0, i.e. the section lies in free space, and that0 is placed along a coordinate
axis of a separable coordinate set, e.g. along a straight line or a circle. We also define the
canonical phase-space coordinate pair(Q, P ) in the vicinity of0, whereQ is the coordinate
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parallel to0. A point (Q, P ) on the Poincaŕe cell now corresponds to a particle crossing0
in a predefined transverse direction, say left to right, at parallel coordinateQ, and conjugate
momentumP . The Poincaré mappingconsists of mapping each point on the Poincaré cell
to the point where the corresponding trajectory next intersects0 with the proper orientation.

If the normal modesψn(r) correspond to the canonical quantization of, for example, the
momentumP , there is a correspondence between theS-matrix and the Poincaré mapping,
which is reflected in the fact that the elements ofS can be represented semiclassically
in terms of the trajectories participating in the Poincaré mapping [22–24]. However, a
quantum analogue of the structures forming on the Poincaré cell is more problematic, since
the quantum operatorS does not operate in phase space but (in this example) in momentum
space. Thus, while classically the current state of the Poincaré cell is defined by a two-
dimensional real distribution, the quantum mechanical counterpart is the one-dimensional
but complex coefficient vectorα.

The use of the scattering formalism on the Poincaré cell to examine structuring of
states was first proposed in [25], where the authors examined the structure of individual
eigenstates on the Poincaré cell and worked out a semiclassical theory for these states in
terms of composite periodic orbits. However, the Poincaré mapping operates in the time (or
time-like) domain, while the study of individual eigenstates is by definition in the energy
domain. It therefore seemed to us that perhaps theS-matrix itself deserves a closer look.
In this work we use a formalism similar to the one introduced in [25] to examine theS-
matrix, and in particular its eigenparameters, with and without the additional requirement
of quantization.

To avoid cumbersome terminology, we limit the following discussion to the case where
0 denotes a circle of radiusR0 centred around the origin. The natural axes to use on0

in a scattering formulation are the impact parameterL and direction of propagationγ of
a particle which intersects0 on an in-bound trajectory. These coordinates are canonically
conjugate via thereducedaction [23, 26], which is the generating function for the mapping
induced by the classical scattering process. Note that, since bothγ andL are constants
of motion for free propagation, the choice(γ, L) also ensures that our map is independent
of R0 for a range of radii for which0 is continually in free space. When quantizing it is
natural to take the normal modesψ(1,2)

n (r) to be given by outgoing and incoming cylindrical
wavesψ(1,2)

n (r) = inH(1,2)
n (kr)einφ , where H(1,2)n (·) are the Hankel functions of the first and

second kind, respectively, andk is the wavenumber. The indexn signifies the quantized
values of the angular momentum,n = kLn. The S-matrix is then unitary without further
normalization, and so its eigenvalues have the formλj = eiθj , and the quantization condition
(3) is fulfilled whenever one of the eigenphasesθj is equal to an integer multiple of 2π .
We will also assume that the system in question is bounded by a circle of radiusR, so that
indicesn > kR correspond to classically forbidden motion. The infinite matrixS can then
be truncated somewhere nearN = [kR], where [·] denotes the integer part, without losing
too much of the dynamics.

The choice of0 described above is (not accidentally) particularly suited to billiards,
where the classical dynamics is free propagation between successive reflections off hard
walls. The numerical examples in this work will be for the annular billiard introduced
in [27], which is a system consisting of the space trapped between two non-concentric
circles. We denote the radii of the outer and inner circles byR anda, respectively, and the
distance between their centres byδ (we take the inner circle shifted to negativex values).
As noted above, in such a system the Poincaré mapping is independent ofR0 in the range
a + δ < R0 < R, and so we will assume thatR0 satisfies this condition, and leave it
unspecified.
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The annular billiard can be quantized by requiring the wavefunction to vanish on the
bounding circles (Dirichlet boundary conditions). In [28] theS-matrix for this system was
shown to be

[S]nm = i(n−m)
H(1)
n (kR)

H(2)
n (kR)

∞∑
`=−∞

Jn−`(kδ)Jm−`(kδ)
H(2)
` (ka)

H(1)
` (ka)

. (4)

(We note that this form differs from the one given in [28] by the factor i(n−m), which results
from a slightly different definition of theψ(1,2)

n (r).) In principle,S is infinite dimensional,
but indices|n| > N = [kR] correspond to classically forbidden motion (closed channels),
and so we will takeS to be a(2N + 1)× (2N + 1) matrix.

3. The Wigner–Poincaŕe distribution

In order to study the classical and quantum distributions on the Poincaré cell on the same
footing, one can introduce what, in the absence of a better name, we call the Wigner–
Poincaŕe distribution (WPD) [25], defined as follows. LetA be some operator defined
in angular momentum representation. The fact that the angular momentum is quantized
introduces some needless complications, and so we will transformA into its angular
representation by means of a Fourier transform,

Â = FAF † Fγ,n = exp[−inγ ]. (5)

Then, the Wigner transform can be defined in the usual way as

AW(γ, n) = 1

2π

∫ 2π

0
dµÂγ− µ

2 ,γ+ µ

2
e−inµ. (6)

Wigner functions are notorious for being very oscillatory, and so it is usually more useful
to consider the Husimi transform, which is the minimal wavepacket smoothed version of
the Wigner transform,

AH (γ, n) =
∫ ∞
−∞

dν
∫ 2π

0
dφAW(φ, ν)exp

[
− (γ − φ)

2

21γ 2
− (n− ν)

21γ 2

2

]
(7)

where1γ 2 is a parameter determining the shape of the smoothing minimal uncertainty
wavepacket. We will choose1γ 2 = 4/k.

We now takeA to be the ‘density operator’ corresponding to some coefficient vector
α, A = αα†. The resulting Wigner- and Husimi-transformed objects we call the WPD,
ρW
α , and Husimi–Poincaré distribution (HPD),ρH

α . Both quantities are real, and the WPD
satisfies the usual projection conditions

∞∑
n=−∞

ρW
α (γ, n) = |α̂γ |2 (8a)

1

2π

∫ 2π

0
dγ ρW

α (γ, n) = |αn|2 (8b)

for integer n. Thus both quantities are normalized to unity (if‖α‖ = 1, which we
will always assume). Moreover,ρH

α is positive semi-definite, and so can be given the
interpretation of a distribution over the Poincaré cell. It is this distribution which we would
like to correlate to classical phase-space structures.

For completeness it should be mentioned that, except possibly at quantized energies,
in most cases there is no clear relation between the WPD and the projection of a Wigner
transformed wavefunction (even a time-dependent one) onto the Poincaré surface-of-section.
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This is because iterations ofS are not quite equivalent to time, since different points on
the Poincaŕe cell will return to it after different intervals of time. For a system such as
the annular billiard the return time is bounded, and so the difference between iterations and
time is not very great. However, in the presence of chaotic scattering (see [30]) the return
times may be infinite even for oneS-matrix iteration.

Up till now we have kept the coefficient vectorsα arbitrary. However, in order to be
meaningful these vectors must be in some way related to the system at hand. In [31] we
use the HPD to follow the time evolution in phase space of a quantum system in much the
same way that one would follow the time evolution of a Poincaré map. The quantities we
focus on in this work are vectorsα(j) which areeigenvectorsof the scattering matrixS,
with an associated eigenphaseθj . An eigenvector ofS does not in general correspond to
an eigenstate of the system, since for thatθj would have to be an integer multiple of 2π .
However, in the time domain (or more precisely, the time-like domain defined by repeated
iterations ofS) an eigenvector corresponds to a phase-space distributionρH

α that remains
invariant under iteration ofS, ρH

α(j)
= ρH

Sα(j) ≡ ρH
j , since the HPDρH

α is insensitive to the
multiplication ofα with a phase.

We see that atany energy the system supports a set of 2N + 1 stationary phase-
space distributionsρH

j . The time domain therefore affords a much richer environment for
study than the energy domain, where only one wavefunction at a time is available for
study, and that only on a discrete set of energies. The two descriptions intersect at the
quantized energies, where one of theρH

j represents the current eigenstate. This does not
mean, however, that the other eigenvectors do not contain information about the system.
This approach also allows us to disentangle the two issues of energy quantization and
wavefunction structure, and treat them separately.

Finally, it is instructive to develop the expression (7) explicitly for the density operator
A = αα†. Inserting (5) and (6) into (7), expanding and performing the integrations gives

ρH
α(γ, n) =

∑
``′
α`α

∗
`′ exp

{
−1γ 2

2

[(
n− `+ `

′

2

)2

+ (`− `′)2
]
− iγ (`− `′)

}
. (9)

From (9) one can see thatρH
α(γ, n) is a local property of the vectorα, in the sense that

it depends only on the componentsα` for which ` is within a few1γ−1 of n. A similar
property holds in the angular representation.

Suppose we now want to measure the amount of overlap ofρH
α with a set of points

{γj , Lj }Tj=1 on the Poincaŕe cell. In the sequel we will use such an overlap to look for
vectors which are localized (scarred) by specific periodic orbits. A natural definition of the
overlap is

B(α) =
T∑
j=1

ρH
α(γj , kLj ). (10)

Then, from (9) we can define the observableBscar by

[Bscar]``′ =
T∑
j=1

exp

{
−1γ 2

2

[(
kLj − `+ `

′

2

)2

+ (`− `′)2
]
− iγj (`− `′)

}
. (11)

Comparing with (9) we see that the overlap is simply given by the expectation value
B(α) = α†Bscarα. This procedure is similar in spirit to the scarring quantity for the Husimi
distributions of quantized levels proposed in [9]. Furthermore, this scarring observable is
more powerful than, for example, the one proposed in [25], since it operates in phase space
and so can unambiguously focus on a desired classical trajectory. It is also easy and fast
to implement numerically. We will give examples of the use of this observable later on.
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Figure 1. The Poincaŕe surface-of-section map for the annular billiard, for parameter values
R = 1, a = 0.4 andδ = 0.2.

4. Eigenstructures of the annular billiard

In this section we examine the structures that one can find among the eigenvectors ofS for
the annular billiard (see (4)). In order to do this, let us first describe the classical structures
one encounters in the Poincaré map.

Figure 1 shows a Poincaré map for the annular billiard, at parametersa = 0.4, δ = 0.2,
R = 1. For values of the impact parameterL > a + δ a trajectory will never impact the
inner circle. L is then a constant of motion, which means that motion is regular and will
project onto the Poincaré cell along straight, horizontal lines. This is just the motion that
one would expect in the absence of the inner circle.

For lower values of the impact parameter, a trajectory will at some stage hit the inner
circle, and since the circles are not concentric, motion will no longer be integrable. This
can give rise to the whole range of phenomena associated with non-integrable systems with
a mixed-phase space: regular islands and island chains, chaotic regions, partial transport
barriers (cantori) and the like. In figure 1 we can see a large regular island at the centre,
encapsulating an elliptic fixed point which corresponds to the periodic orbit which bounces
between the two circles along thex-axis on the right-hand side of the billiard. Its sister
orbit, which bounces along thex-axis on the left-hand side of the billiard, is unstable and
lies at the heart of the chaotic sea. In addition, we see a regular island chain surrounding
the centre island, which in fact comprises asingle regular region encapsulating a period-6
elliptic periodic orbit. Finally, near the boundary between the integrable and non-integrable
regions there are several smaller regular island chains.

We see that the annular billiard displays the whole range of structures one might expect
to find in a two-degree-of-freedom system with mixed dynamics. One then asks how this
manifests in the structure of the eigenvectors of itsS-matrix. Following the examples
of [32, 33], we first obtain a rough classification of eigenvectors. Let us define for an
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eigenvectorα(j) the following quantities:

Nj =
[∑

n

n2|α(j)n |2
]1/2

Sj = −
∑
n

|α(j)n |2 log |α(j)n |2. (12)

These quantities can be interpreted as the root-mean-square angular momentum and the
Shannon entropy ofα(j), respectively. It is instructive to briefly consider two limiting
cases. Each member of a regular high-angular-momentum doublet peaked at±n will have
Nj ≈ n andSj ≈ log 2. On the other hand, chaotic eigenvectors will haveNj somewhere
between 0 andk(a + δ). To estimate their entropy, we assume that their elements are
Porter–Thomas distributed [34] over some number,Nγ , of components,

P(x = |αn|2) =
(
Nγ

2πx

)1/2

exp

(
−xNγ

2

)
and zero otherwise. The mean entropy of such vectors can be calculated from

〈Sj 〉 = N
3/2
γ

2π

∫ ∞
0

dx x1/2 logxe−xNγ /2

= log(Nγ )+ log 2− 2+ γE ≈ log(0.48Nγ ) (13)

whereγE denotes Euler’s constant. This can be used to scale out the energy dependence
of the entropy of chaotic vectors: sinceNγ scales roughly likeNγ ∝ k, we can
expect〈Sj 〉 − log(0.48k) ≈ log(Nγ /k) to be independent ofk for chaotic eigenvectors.
Consequently, we will use scaled axes and plotÑj = Nj /k as a function ofS̃j =
Sj − log(0.48k).

We present in figure 2 threẽNj − S̃j diagrams ofS-matrix eigenvectors at different
wavenumbersk = 100, 200 and 600. The data points follow a relatively narrow distribution.
Starting from the upper left corner, we find regular, high angular momentum doublets at
Ñj & 0.6 and S̃j ≈ log(4/k), then see a smooth transition regime of edge eigenvectors
towards smallerÑj and higherS̃j until the entropy achieves its maximal value in the range
of −0.5 6 S̃j 6 0. This is mainly the domain of vectors supported by the chaotic layer.
Towards lowerÑj , we again find regular vectors: a distinct strip of data points around
Ñj ≈ 0.28 that corresponds to regular vectors supported by the centre satellite islands
(towards lower entropy) and their sticking region (towards higher entropy), and a line of
decreasingS̃j and Ñj (down S̃j ≈ −2 andS̃j ≈ 0) that corresponds to vectors supported
by the centre regular island.

A word of caution is in place here: the value obtained forSj in (12) depends on the
representation chosen for the eigenvectors. This probes onlyone axis in phase space and
does not necessarily allow conclusions on the Poincaré cell structure of the quantum state.
For example, for a state localized at a certain angular momentum value, (12) gives a low
entropy, whereas for a state localized at a certain angle, the broad distribution in angular
momentum will lead to a high value ofSj .

As the energy is increased, the data points ‘condense’ onto the line just described.
We see that for chaotic vectors,〈S̃j 〉 is roughly constant. This can be used to extract
Nγ /k ≈ 0.9 as a measure of the classical phase-space volume occupied by chaotic states.
As k increases,Nγ /k decreases slightly, which might be attributed to the more rapid decay
of overlaps away from the supporting phase-space region at higher energies. Anyhow, it
must be emphasized that the scaling of〈S̃j 〉 does not serve as a conclusive argument for the
Porter–Thomas distribution of chaotic eigenvectors: many other distributions yield similar
scaling laws of〈S̃j 〉 with log k, and a distinction cannot be made from the numerical data
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Figure 2. A plot of the root-mean-square angular momentum,N , versus the entropy,S, of
eigenvectors of the annular billiard for parameter valuesR = 1, a = 0.4 andδ = 0.2, and at
energiesk = 100 (a), k = 200 (b) andk = 600 (c). The axes are scaled to remove the dominant
energy dependence (see text).

presented. Indeed, in the present system it is our experience that a large proportion of the
irregular states possess an HPD which is highly localized around classical structures, and so
are quite far from the Porter–Thomas ansatz in phase space. However, we can tentatively
conclude from the scaling results that the structure of all but the regular eigenvectors is
based on some underlying classical partition of phase space.

TheÑj–S̃j diagram provides us with a global overview of the properties of eigenvectors.
We are, however, more interested in the fine structure ofindividual eigenvectors. In the
rest of this section we investigate this point by examining the phase-space structure of
eigenvectors by means of their HPD. Almost all of the eigenvectors displayed in this section
are evaluated atk = 600, which one should note is not an eigenenergy of the annular billiard.

Let us start by examining the effects of the regular phase-space regions. In figures 3(a)–
(c) we show several HPDs, overlaid by a plot of the positions of the sizeable classical
stable islands that exist in the Poincaré map. One can see that the specific HPDs shown
all reside on or in a classically stable region—either the main stable island in the middle,
its primary satellite islands, or in the near-integrable region of high angular momentum
n > k(a + δ). Note that, as has been observed before [35, 36], quantum regularity extends
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(a) (d )

(b) (e)

(c) ( f )

Figure 3. The HPD of several regular or near-regular eigenvectors atk = 600. The full lines
depict the sizeable classical regular islands in the Poincaré surface-of-section. (a), (b) and (c)
show eigenvectors which are supported by classically regular phase-space regions. (d), (e) and
(f ) show eigenvectors which are supported by the ‘sticking’ regions surrounding classically
stable islands.

further into phase space than does classical stability. This is attributed to the relatively stable
classical motion in the transition layer between regular and chaotic phase-space regions that
gives rise to staying times much larger than the mean level density, which in turn leads
to quantization of states on this phase-space region. In figures 3(d)–(f ) we show several
eigenvectors which seem to be supported by the interface region between the regular and
chaotic regions. In particular, the boundary regions|n| . k(a + δ) support a series of
regular-looking eigenvectors which extend well into the classically chaotic regions. These
so-called edge states were of critical importance to the understanding of ‘chaos-assisted
tunnelling’ in this system, i.e. tunnelling between pairs of regular states of high-angular
momentum via the chaotic sea [28].

Next, let us examine some ‘chaotic’ eigenvectors, i.e. those whose HPD has its support
mainly in the classically chaotic region. It seems that a sizeable number of such eigenvectors
are structured, and several of these are displayed in figure 4. On the right side of the figure
we show some chaotic HPDs, and on the left side the configuration-space representation
of the scarring periodic orbits, of period-4, period-6 and period-8. The surface-of-section
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(a) (d )

(b) (e)

(c) ( f )

Figure 4. The HPD of several scarred ‘chaotic’ eigenvectors atk = 600, together with a
configuration space plot of the scarring unstable periodic orbit. The full lines depict the sizeable
classical regular islands in the Poincaré surface-of-section. The projections of the periodic orbits
(and their time-reversed partners) onto the Poincaré cell are shown as small white squares.

representation of the orbits is also overlaid on top of the HPDs, in the form of small open
squares. Note that, unless the orbit is self-retracing, each plot representstwo orbits, since
each orbit has a time-reversed partner. The fit is quite distinctive (keeping in mind that the
x-axis is actually a periodic angular coordinate). It should again be mentioned that all the
above distributions are calculated for the same system and at the same energyk = 600.

In [10] it was suggested that specific unstable periodic orbits can support a whole family
of scarred states. A demonstration that this also applies to eigenvectors is shown in figure 5.
The full curves in the figure trace the stable and unstable manifolds of the hyperbolic fixed
point, and one can see a remarkable structure build up along these manifolds. Figure 5(a)
shows the ‘fundamental’ scarred eigenvector. It is heavily localized on top of the fixed point,
but local maxima of probability also appear along the stable/unstable manifolds, and most
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(a) (d )

(b) (e)

(c) ( f )

Figure 5. The HPD atk = 600 of several eigenvectors which are scarred by the unstable fixed
point. The lines trace the stable and unstable manifolds of the fixed point. Note that theγ -axis
is shifted byπ relative to the previous plots.

prominently at the homoclinic intersections of the manifolds. Figure 5(b) shows another
scarred eigenvector which displays much more probability at the homoclinic intersections.
In figure 5(c) the main peak at the fixed point begins to split vertically, a process which
continues in figures 5(d) and (e). Finally, comparing figures 5(d)–(f ) we see that one can
get the maxima at the homoclinic intersections to successively split up as well. This set
of examples is strongly reminiscent of a set of EBK-quantized states with two approximate
internal ‘quantum numbers’. We note that, while scars have been observed before to extend
themselves along the stable and unstable manifolds of periodic orbits (see e.g. [6, 10]), in
this case we observe scars which extend along the manifolds for the entire width of the
system, not just in the close vicinity of the scarring orbit. Additionally, even though some
indications of this effect have been seen before [9], this is the first time to our knowledge
that the importance of the homoclinic intersections have been demonstrated in such a clear
fashion.

For completeness, we also check the correspondence between specific HPDs and
quantized wavefunctions. In figure 6(a) we show a grey-scale plot of a quantized
wavefunction atk = 86.492 in configuration space. One can see that this particular
wavefunction is structured, although it is not immediately obvious by what—there is a



3624 S D Frischat and E Doron

(a) (b)

Figure 6. A quantized wavefunction (a) and corresponding HPD (b) at k = 86.492. The full
lines in (b) depict the sizeable classical regular islands in the Poincaré surface-of-section.

pile-up of probability along the shortest unstable periodic orbit, but one can also discern a
triangular structure along the left-hand side of the billiard which might or might not have
something to do with a classical trajectory. This ambiguity is removed by examining the
corresponding HPD, which can be seen in figure 6(b). Most of the probability is indeed
localized around the hyperbolic fixed point(γ = 0, L = 0), and the triangular structures
seen in the wavefunction can be attributed to the contributions of the orbit’s primary and
secondary homoclinic intersections.

5. Evolution of eigenvectors and eigenphases

TheÑj–S̃j diagrams presented in the previous section suggest that the classification of states
by the classical nature of their supporting phase-space regions is more or less followed. A
similar observation concerning energy-quantized eigenfunctions has been made in [13].
However, we would like to go a step further, and conjecture that at least those eigenvectors
which are shaped by an underlying classical structure (not just an entire phase-space region)
also retain their identity over a significant range in energy. For example, an eigenvector
which is scarred by a given periodic orbit will evolve in energy to a very similar-looking
eigenvector, whose HPD is scarred by the same periodic orbit. Thus the picture that we
suggest is that at any (sufficiently high) energy theS-matrix supports a set of structured
(regular, inner-island, scarred, etc.) eigenvectors, which retain their identity across an energy
range which is much larger than the mean level spacing (note that we are not claiming that
all eigenvectors are structured). As the energy is increased, the eigenphases associated with
those eigenvectors will ‘rotate’ around the unit circle with some ‘velocity’. Whenever one
of these eigenphases passes through an integer multiple of 2π the system quantizes, and
the structure of the quantized eigenfunction is determined by the identity of the quantizing
eigenvector. If this picture is correct, it means that phase-space structure and quantization
are two distinct issues, which should be dealt with separately. In this section we will explore
this possibility by numerically investigating the energy dependence of the eigenparameters
of the S-matrix derived for the annular billiard.

Let us first determine the average energy dependence of all of the eigenphases. This
mean can be obtained from rather general considerations, first applied in [20]. The mean
level density in a billiard can be approximated by the leading order of the Weyl formula
[37], 〈d(k)〉 ≈ kA/2π , whereA is the area of the billiard. Let us define the ‘eigenphase
velocity’ τ` = ∂θ`/∂k. Sinceτ` > 0 [38], the rate at whichθ` crosses a multiple of 2π is
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τ`/2π . Comparing this with the Weyl formula gives∑
`

τ` ≈ kA. (14)

For the annular billiard the number of contributing channels is 2kR, and the area is
A = π(R2− a2). Thus the mean velocity is

〈τ`〉 ≈ π(R2− a2)

2R
. (15)

Note that〈τ`〉 is thereby determined by a purely classical quantity.
Equation 15 gives the mean behaviour of the eigenphases. However, we are more

interested in the evolution ofindividual eigenphases and eigenvectors. As always, we
begin with the eigenphases belonging to eigenvectors of high angular momentum. For
n > k(a + δ) the S-matrix is roughly diagonal, and so the associated eigenvectors are
well approximated by combinations of angular momentum states| ±n〉. The corresponding
eigenphase is approximately

eiθn ≈ −H(1)
n (kR)

H(2)
n (kR)

≈ exp
[
−2ikR(sinQ−Q cosQ)− i

π

2

]
Q = arccos

( n
kR

)
(16)

where the second equality results from the Debye approximation forn ∼ k � 1 [39], which
is equivalent in this case to the semiclassical approximation. Differentiating the phase with
respect tok then yields

τn = ∂θn

∂k
≈ 2

√
R2−

(n
k

)2
. (17)

This quantity can be given a simple classical interpretation, as follows. Consider a straight
line with impact parametern/k, which is just the classical impact parameter associated
with the angular momentum states| ± n〉. Then,τn is given by the distance between the
two intersections of this line with theR circle. In other words,τn is given by the path
length of the appropriate trajectory between two consecutive intersections with the Poincaré
surface-of-section.

The regular high angular momentum states are easily identifiable by virtue of being
almost exclusively localized at angular momenta±n, and interact only weakly with other
states. Consequently, both their structure and their velocity are straightforward to define.
This is not necessarily the case for the irregular eigenvectors, and poses the question of how
to track an eigenvector across a sizeable range in energy. One way to do that is to diagonalize
S on a set of closely spaced energy values, and to track the eigenphases. However, this
method will break down at an avoided crossing between the tracked eigenphase and another
one, since in the vicinity of the avoided crossing the two states mix, and then part ways after
having interchanged their identity. Thus the energy derivatives of the eigenphases arenot
equivalentto the ‘velocity’ associated with a particular structured eigenvector. Rather, one
has to track the eigenvector across many avoided crossings to obtain a meaningful velocity.

Another potential complication is that specific classical structures may support more
than one eigenvector at any given energy. We can therefore attempt to label individual
eigenvectors by the classical structure which supports them, plus one or more ‘quantum
numbers’ which distinguish between different excitations which might belong to the
structure. For example, a single regular island in phase space might be large enough
to support a whole set of states, which can be ordered into a fundamental ‘ground state’
and set of excitations on the island. Similarly, an unstable periodic orbit might support one
scarred eigenvector, or if it is stable enough it might support more than one (see also [10]).
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The thesis we are advancing in this work is that a set of quantum phase-space structures
exist which are stable in the sense that eigenvectors with a specific HPD can be found
over a large range in energy. We therefore suppose that the difficulties detailed above can
be overcome by carefully examining the HPDs of the eigenvectors, and let us limit the
discussion to eigenvectors whose HPD is dominated by one specific (stable or unstable)
periodic orbit. A natural classical parameter is then the length of the orbit. This parameter
also appears in suggested EBK-like criteria for quantization of scarred states [9, 18, 25]. In
the following we examine the relation between the orbit length and the eigenphase velocity
for structured eigenvectors in the annular billiard.

Let us first consider the central stable island. The primary classical structure associated
with this island is the stable fixed point at(γ = π,L = 0), which corresponds in
configuration space to a periodic orbit of lengthλs = 2(1− a + δ) = 1.6 which bounces
between the two circles along thex-axis on the right-hand side of the billiard. Note that
λs is significantly larger than the mean eigenphase velocity〈τ 〉 = 1.32. The prediction
is, therefore, that over a wide range in energy one can find an eigenvector which is the
‘fundamental’ of the stable island, in the sense that its HPD is localized at the fixed point
itself, and that the associated eigenphase increases linearly with the energy with a rate given
by λs .

The annular billiard also supports an unstable fixed point, corresponding in configuration
space to a periodic orbit of lengthλu = 2(1− a− δ) = 0.8 which bounces between the two
circles along thex-axis on the left-hand side of the billiard. In this caseλu is significantly
smaller than the mean velocity. As in the case of the regular island, more than one
eigenvector is scarred by this periodic orbit (see figure 5), and so we examine only the
‘fundamental’ excitation, i.e. that whose HPD is localized most strongly on the fixed point.

The predictions given above are tested in figure 7. Figure 7(a) shows a configuration
space plot of the periodic orbits which correspond to the stable (broken curve) and unstable
(full curve) fixed points of the Poincaré mapping. Figure 7(b) displays the eigenphases
associated with eigenvectors whose HPD are most strongly localized on the stable (squares)
and unstable (circles) fixed points, over the range 1506 k 6 160, and figures 7(c) and
(d) show the HPDs of such eigenvectors. The HPDs are evaluated atk = 160, but do not
change their form over the entire displayed energy range. Note in figure 7(d) the now-
familiar secondary probability maxima at the homoclinic intersections of the unstable fixed
point.

One can see in figure 7(b) that the eigenphases follow a linear increase withk. For
comparison, we have also overlaid straight lines with the predicted slopes ofλs andλu. In
the case of the stable fixed point, all of the eigenphases lie exactly on the predicted line. In
the case of the unstable fixed point, we see that the mean slope is well given byλu, but that
the local slopes may be bigger. The reason for this is the following. Sinceλu is significantly
smaller than〈τ 〉, there are numerous avoided crossings between the scarred eigenvector we
are tracking and other eigenvectors. Because the unstable fixed point resides in a chaotic
part of the classical phase space, these avoided crossings are not small, and give rise to
local slopes which are larger than those obtained by tracking the scarred eigenvector across
a large energy range. In contrast, the stable regular island comprises a near-integrable and
almost isolated subsystem. Its eigenvectors consequently do not ‘interact’ with each other
or with the chaotic eigenvectors, and one can neglect the effects of avoided crossings.

We see that one can associate the fixed points of the mapping with a set of structured
eigenvectors, whose eigenphases increase linearly withk with a velocity given by the length
λ of the associated classical orbit. A consequence of this is that a structured quantized state
corresponding to these structured eigenvectors will recur at regular energy intervals of
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(a) (c)

(b) (d )

Figure 7. The energy dependence of the eigenphases associated with eigenvectors which
are scarred by the fixed points of the Poincaré mapping for the annular billiard. (a) The
configuration-space plot of the stable (broken line) and unstable (full line) periodic orbits
corresponding to the fixed points of the Poincaré mapping. (b) The eigenphases associated
with scars on the stable (squares) and unstable (circles) fixed point. The full curves depict
slopes ofλs = 1.6 andλu = 0.8, and the broken curves mark integer multiples of 2π . (c) The
HPD of a stable-fixed-point eigenvector atk = 160. (d) The HPD of an unstable-fixed-point
eigenvector atk = 160.

1k = 1/λ. This is consistent with an approximate EBK quantization along the orbit which
has been suggested and observed in [7, 9, 18, 25].

The examples given above were for periodic orbits which are fixed points of the Poincaré
mapping. The situation becomes more involved for periodic orbits with a Poincaré-map
period T > 1, since then we encounter a seeming paradox. On the one hand, the mean
eigenphase velocity is given by (15), which is also roughly the mean length of an arbitrary
trajectory between two successive intersections with the Poincaré surface-of-section. On
the other hand, the natural scale to associate with a given periodic orbit is itstotal length,
which is of the order of∼ T 〈τ 〉, and forT � 1 is much larger than the mean behaviour.
This apparent incompatibility resolves itself in a somewhat surprising manner, as we shall
see below.

In order to track specific structured eigenvectors we applied the scarring observableBscar

(see equation (11)) to the eigenvectors ofS over an entire range in energy, and selected
the eigenvectors with the highest expectation value forBscar for the desired periodic orbits.
In figure 8 we display the eigenphases and HPD of the first few eigenvectors which are
most scarred by periodic orbits of period 4 ((g) and (b) showing the nine most scarred
eigenvectors), period 5 ((c) and (d) showing eight most scarred eigenvectors) and period
6 ((e) and (f ) showing six most scarred eigenvectors), over the range 1506 k 6 160.
The period-4 and period-5 orbits are unstable (the period-5 orbit is the one displayed in
figure 10(a)), while the period-6 orbit is stable and lies at the heart of the satellite regular
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(a) (b)

(c) (d )

(e) ( f )

Figure 8. (a), (c) and (e) The rescaled eigenphase,ξn (see (18)), versus the wavenumber,k, for
eigenvectors which have maximal overlap with a period-4 unstable periodic orbit (a), a period-5
unstable periodic orbit (c), and a period-6 stable periodic orbit (e). The broken curves represent
unrescaled phases which are integer multiples of 2π . (b), (d) and (f ) The HPD of scarred
eigenvectors atk = 160 for the period-4 (b), period-5 (d) and period-6 (f ) periodic orbits. The
open squares represent the intersections of the orbit and its time inverse with the Poincaré cell,
while the full lines depict the sizeable classical regular islands.

islands in the Poincaré map. The quantity which is actually plotted in the phase plots is

ξn = θn − kλ/T
2π/T

+ ξ0 (18)

whereξ0 is an arbitrary phase shift which is included for convenience.ξn removes from
θn an increasing slope ofλ/T , and rescales so that the phase is displayed in multiples of
2π/T . Remarkably, for the three families of scarred eigenvectors displayed in figure 8,ξn
falls almost exactly on the integers. Since the removed slopes are of the order of∼ 1.5
(see the broken curves), the figure shows that the classically obtained slopes are accurate
to within 1% or less.

The resolution is therefore the following. Rather than a single eigenvector whose
eigenphase evolves with ‘velocity’λ, the S-matrix supports∼ T (or ∼ 2T , see below)
eigenvectors structured by the same periodic orbit, each with an eigenphase velocity of
λ/T . Thus, on the one hand, individual velocities do not deviate too much from the mean
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〈τ`〉 as given in equation (15), but, on the other hand, quantization will yield structured
eigenstates with spacings of1k = 2π/λ, as expected from EBK-like considerations.
However, successively structured eigenstates do not in some sense represent the ‘same’
scar, since smoothly tracking a given structured eigenvector yields quantized structured
eigenstates with a wavenumber separation of 2πT/λ.

A careful look reveals some differences between the behaviours of the eigenvectors
which are scarred by different periodic orbits. For the satellite island states (figure 8(e))
the rescaled eigenphases fall almost exactly along straight lines on the integers. This can
be explained by the fact that the periodic orbit is stable and that the nearby phase space
is near-integrable. In contrast, the period-4 and period-5 orbits are unstable, and so their
respective scarred eigenvectors interact with other states via avoided crossings. This is
most apparent for the period-4 orbit, for which one observes in figure 8(c) rather orderly
fluctuations around the horizontal, suggesting some kind of beat phenomena with a nearby
periodic orbit with almost the same value ofλ/T .

Another difference is the following: From figure 8 it is apparent that the period-4 and
period-5 unstable periodic orbits support∼ 2T scarred eigenvectors, while the period-6
stable orbit clearly supports onlyT eigenvectors. This can be explained by the fact that
the period-6 orbit is self-retracing, while the period-4 and period-5 orbits are not. If an
orbit is not self-retracing, it has a distinct time-reversed partner, which of course has the
same action and stability. Throughout we have observed that the behaviour of ‘regular’
eigenvectors and scarred eigenvectors differ in degree rather than quality, and so it should
not perhaps come as a surprise to learn that scarred eigenvectors can appear in pairs, in
much the same way as the regular eigenvectors appear in tunnelling pairs [40].

We demonstrate this fact more explicitly in figure 9, where we display the (rescaled)
eigenphases of the 11 eigenvectors which are most scarred by the period-5 periodic
orbit, at k = 600. Additionally, we differentiate between symmetric and antisymmetric
eigenvectors by denoting the former by open squares and the latter by full circles. One
can see that, out of the 11 most-scarred eigenvectors, 10 arrange themselves along the now
familiar integerξ values. Moreover, one can clearly see that the eigenvectors come in
symmetric/antisymmetric doublets. The separation between the pairs is displayed in the
inset, along with a line denoting the mean level spacing of the chaotic layer estimated from
the eigenvector entropies (see figure 2). Interestingly, the typical ‘splitting’ of the scarring
doublets is larger than the mean level spacing. This is to be expected, since both the orbit
and its time-reversed image reside in the same chaotic layer, and are not separated by any
well formed classical transport barriers. Nevertheless, the scarring doublet is clearly well
defined.

Scarring eigenvector doublets are expected to give rise to scarred eigenfunction doublets
in the same manner as tunnelling eigenvector doublets yield tunnelling eigenenergy doublets
[28]. To the best of our knowledge, this is the first time the phenomenon of scarring doublets
has been described.

Finally, let us track the energy evolution of the eigenvectors which are scarred by the
unstable period-5 orbit, for which the eigenphases were displayed above. The periodic orbit
itself is shown in figure 10(a). It is not a self-retracing orbit, and so on the Poincaré cell the
orbit and its time-reversed partner are distinct, and we expect to see eigenvectors which are
peaked at 10 different points. In figures 10(b)–(f ) we show HPDs of eigenvectors which
are scarred at this pair of periodic orbits, for wavenumbers which range fromk = 110
to k = 600. Scarring along this orbit first becomes unambiguously visible atk = 110
(figure 10(b)), where, however, one cannot resolve too much detail because the wavelength
is too long. We next show two different scarred eigenvectors which coexist at wavenumber
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Figure 9. The rescaled eigenphase,ξn (see (18)), of the 11 eigenvectors which are most scarred
by a period-5 non-retracing unstable periodic orbit, atk = 600. The orbit is the one displayed
in figure 10(a). The open squares denote symmetric eigenvectors, and the full circles denote
antisymmetric eigenvectors. Inset: the spacing between the rescaled eigenphases constituting
the plateaus. The broken line represents the mean level spacing associated with the chaotic
layer.

k = 152.2 (figures 10(c) and (d)). Examining figure 8(a) we see that at this wavenumber
the eigenphase of one of the scarred eigenvectors (in this case the one whose HPD is
displayed in figure 10(c)) is equal to an integer multiple of 2π , and so we expect a scarred
quantized wavefunction there. At this wavenumber more detail is becoming visible, and the
contributions of the periodic orbit and its time-reversed partner are starting to be resolved.
The structure that emerges is explained in figure 10(d). This depicts another eigenvector
which is also evaluated atk = 152.2, but whose eigenphase is(3× 2π/5) mod 2π , and
so does not represent a quantized eigenfunction. On top of this graph we overlaid white
lines which trace the stable and unstable manifolds of the periodic orbit. It is apparent that
the probability peaks in the HPD align themselves with the stable and unstable manifolds.
Moreover, while in figure 10(c) the probability maxima were at the periodic orbit itself,
in figure 10(d) we observe a higher amplitude at the intersections of the manifolds of the
periodic orbit and its time-reversed partner. Thus in cases where the periodic-orbit points
are closely spaced on the Poincaré cell, and the wavelength is not too short, one can expect
interference phenomena to give rise to various kinds of fine structures in the close vicinity
of the orbit.

Going to higher energies, we show eigenvectors which are scarred on the same orbit
at k = 200 (figure 10(e)) and k = 600 (figure 10(f )). As the wavelength decreases,
interference between different probability peaks becomes less important, and the distinct
maxima are more apparent. It is evident that the fundamental structure of the scarred
eigenvectors persists in a distinct manner over a very wide energy range—betweenk = 110
andk = 600 there are more than 70 000 intervening quantized levels of the billiard.
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(b) (e)

(c) ( f )

Figure 10. (a) The configuration-space structure of the period-5 unstable periodic orbit. (b)–(f )
The HPDs of eigenvectors which are scarred by this periodic orbit, fork = 100 (b), k = 152.2
((c) and (d)), k = 200 (e) and k = 600 (f ). The projection of the periodic orbit and its time
inverse onto the Poincaré cell is shown by open squares, and the full lines delimit the sizeable
classical regular islands in the Poincaré surface-of-section. In (d) we also show by open areas
the Poincaŕe cell projection of the stable and unstable manifolds of the periodic orbit.

6. Discussion

The scattering matrixS and its close relation theT -matrix have been used in the last few
years to quantize several families of chaotic systems, most notably billiards [20, 41, 42]. In
this work we have shown that theeigenvectorsof S are also interesting objects of study
in their own right. We described how one can project the eigenvectors onto the same
Poincaŕe surface-of-section that is used to constructS, thus obtaining a phase-space picture
of eigenstructures which is analogous to the familiar classical Poincaré cell pictures. We
then studied the structures that emerge and their evolution in energy, and discussed their
relation to the structure of quantized wavefunctions.

The main tool used in this work was the WPD and its smoothed partner the HPD,
which were also utilized in [25] and are analogous to the familiar Wigner and Husimi
distributions over phase space. However, the analogy does not imply an identity. The time-
independent Schrödinger equation for a compact system can be solved only at quantized
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values of the energy, and even then has only one single associated eigenfunction at a
given quantized energy (barring degeneracies). In contrast, theS-matrix is well defined
and can be decomposed into its eigenparameters at any energy. The eigenvectors of
S therefore comprise a much richer field for research than the eigenfunctions of the
Hamiltonian. Moreover, studyingS enables one to explore the evolution of quantum phase-
space structures in energy, since one can then smoothly track a structure in energy even
when it does not manifest as a quantized state.

A fortuitous property of the WPD/HPDs is the ease by which they may be calculated.
One simply has to evaluateS, diagonalize, and Fourier transform, to obtain a full phase-
space picture. In contrast, in order to obtain the Wigner function of a given eigenstate,9,
of the Hamiltonian one has to first search for the quantizing energy and then evaluate it over
configuration space. This entails both a calculation of the coefficients of an expansion of9

over some basis, and the summation of the resulting series over a fine enough grid. This is
not only time-consuming but can give rise to problems of numerical stability. For example,
in the annular billiard it is natural to use polar coordinates and a basis of cylindrical incoming
and outgoing waves. However, the resulting Hankel function series become increasingly
ill-conditioned as the energy increases. The consequence is that, even given the coefficients
of the cylindrical wave expansion to double-precision (about 15 digit) accuracy, one can
directly evaluate the wavefunction over configuration space only up tok ∼ 90. Even at
lower energies the conditioning of the Hankel series is heavily dependent on, for example,
the choice of the origin of the coordinate system and the method of summation. In contrast,
the evaluation of HPDs entails no significant numerical problems apart from the size of the
S-matrix, and we encountered no difficulty in obtaining HPDs at wavenumbers ofk = 600
and beyond.

A new result which has emerged from this work is the appearance ofscarring doublets.
These are pairs of eigenvectors, one symmetric and one antisymmetric, which are structured
by both a non-self-retracing periodic orbit and its time-reversed image, and which give
rise to closely spaced pairs of structured eigenfunctions of the billiard. This effect was
anticipated for states structured by a stable periodic orbit, since then the orbits are separated
by classically impenetrable KAM-like tori, and the effect is a manifestation of chaos-assisted
tunnelling [40]. However, its appearance for unstable scarring orbits was a surprise. It
raises several interesting questions, most notably the determination of the statistics of the
pair separation, which is not determined here by a tunnelling amplitude but by the quantum
dynamics itself.

The result of this work is a new picture of the way structured states form and
quantize. The philosophy is that a full set of structured eigenvectors ‘exist’ for all energies,
and that their structure, as it manifests in the HPD, is only slowly varying with the
energy. Quantization, on the other hand, is determined by the behaviour of the associated
eigenphases. Regarding eigenvectors which are structured by a periodic orbit (stable or
unstable) of lengthλ and Poincaŕe map periodT , our results suggest that they appear in
T - or 2T -tuples, and that their associated eigenphases form a regularly spaced ‘comb’ of
phases, with each branch increasing linearly withk with a slope ofλ/T . A given structured
eigenvector will consequently give rise to a structured quantized wavefunction at regulark

intervals ofT/λ, whenever its eigenphase passes through an integer multiple of 2π , while
the family as a whole will produce either single-structured states or pairs of structured states
at the EBK-like intervals of 1/λ. The question of quantization is, therefore, disentangled
from the one of wavefunction structure, and the two can be studied separately.

The numerical results presented here were for a billiard system, for which the classical
dynamics do not depend on the energy except through a trivial scaling. In a non-scaling
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system one would not expect the quantum structures to persist over ‘classical’ energy ranges,
i.e. ranges over which the classical structures and orbits change significantly. However, at
high energies there is a clear separation of scales between this classical scale and the
quantum scale of the mean level separation. Therefore, we expect our conclusions to hold
in non-scaling systems over energy ranges which are, in this respect, classically small but
quantum-mechanically large.

An interesting note is the following. In [9] M̈uller and Wintgen studied the diamagnetic
Kepler problem, and one of their conclusions was ‘scars are the rule rather than the
exception’. In contrast, in [25] Klakow and Smilansky claimed, on the basis of the
Shnirelman theorem [43], that ‘scars are scarce’ (see also [44]). Without claiming to
prove anything, our experience so far with the annular billiard tends towards the former
statement, at least if scarring is determined using the HPD. For example, atk = 600 there
are∼ 500 eigenvectors which are supported by the chaotic region of phase space, and
we have come across only a few which are not manifestly peaked around some classical
structure. A phenomenon which we have observed, however, is the one of mixing of two
or more structured eigenvectors to yield a doublet which has a significant overlap with the
supporting phase-space regions of all the constituent elements. Additionally, an eigenvector
may be structured not only by a periodic orbit but also along its stable/unstable manifolds,
and in particular at the major homoclinic intersections. The result is that it is not always
straightforward to tell if a given state is structured or not. Some evidence of this fact
can even be seen in [10, figures 1(a) and (b)]. There, the authors claim to have found
only a low density of scarred states; however, they comment about the filamentary and
non-ergodic nature of the smoothed Wigner functions of the states which they identify as
‘almost microcanonical’, i.e. not clearly structured.

The work we report on here is preliminary, and much of the evidence is numerical in
nature. However, one can think of various implications concerning the creation of quantum
phase-space structures. Most importantly, it seems that the eigenfunction structuring over
an energy range which is much larger than the mean level spacing can be determined by
examining the eigenvectors ofS at anysingle intermediate energy, which does not even have
to be an eigenenergy of the system. This would imply that the interference effects between
different periodic-orbit (more precisely, composite-orbit) contributions considered in [25],
cannot be very important, since one would expect them to be strongly energy dependent.
Indeed, in our opinion structuring of wavefunctions is best studied in thetime (or time-like)
domain; the structuring ofS-matrix eigenvectors is not significantly energy dependent over
quantum energy scales, and the behaviour of the associated eigenphases is even simpler, a
linear increase withk with a classically determined slope. Thus periodic-orbit theory, in
spite of its successes [18, 19, 25], is perhaps not the optimal way to proceed.

One can think of many open questions posed by the current work. Ideally, one would
like to understand the structuring of eigenvectors from a semiclassical point of view. The
curious phenomenon of theT -multiplicity of eigenvectors which are scarred by a period-
T orbit also remains to be understood, as does the existence of ‘excited scars’. Scarring
doublets also seem to raise more questions than they answer, such as the values of the
pair separations and the manner in which the doublet evolves under the application of a
magnetic field. Another interesting quantity is the ‘scarring observable’B(α). It would
be interesting to develop a semiclassical theory forB(α), and compare it with the scarring
criterion developed in [18] to see similarities and differences. Finally, one can study the
interactions and mixing between different structured states, especially in the limit of high
energy.
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[37] Baltes H P and Hilf E R 1976Spectra of Finite Systems(Mannheim: Bibliographisches Institut)
[38] Smilansky U 1995Proc. 1994 Les Houches Summer School on ‘Mesoscopic Quantum Physics’ed E

Akkermans, G Montambaux, J-L Pichard and J Zinn-Justin (Amsterdam: Elsevier) p 373
[39] Sommerfeld A 1964Lectures on Theoretical Physicsvol 6 (New York: Academic)
[40] Bohigas O, Tomsovic S and Ullmo D 1990Phys. Rev. Lett.64 1479
[41] Bogomolny E B 1990Comm. At. Mol. Phys.25 67
[42] Rouvinez R and Smilansky U 1995J. Phys. A: Math. Gen.28 77
[43] Shnirelman A I 1974 Usp. Mat. Nauk.29 181
[44] Li B and Robnik M 1994J. Phys. A: Math. Gen.27 5509


